收录期刊

    高级检索
    齐鹏云,甘敏,赖锡军. 基于集成学习LightGBM模型的巢湖水位预测研究[J]. 中国防汛抗旱,2025,35(2):81−86. DOI: 10.16867/j.issn.1673-9264.2024064
    引用本文: 齐鹏云,甘敏,赖锡军. 基于集成学习LightGBM模型的巢湖水位预测研究[J]. 中国防汛抗旱,2025,35(2):81−86. DOI: 10.16867/j.issn.1673-9264.2024064
    QI Pengyun,GAN Min,LAI Xijun.Study on the water level forecast in Chaohu Lake using the ensemble learning LightGBM model[J].China Flood & Drought Management,2025,35(2):81−86. DOI: 10.16867/j.issn.1673-9264.2024064
    Citation: QI Pengyun,GAN Min,LAI Xijun.Study on the water level forecast in Chaohu Lake using the ensemble learning LightGBM model[J].China Flood & Drought Management,2025,35(2):81−86. DOI: 10.16867/j.issn.1673-9264.2024064

    基于集成学习LightGBM模型的巢湖水位预测研究

    Study on the water level forecast in Chaohu Lake using the ensemble learning LightGBM model

    • 摘要: 准确预测预报湖泊水位的变化对区域水安全保障意义重大。为了实现湖泊在流域来水驱动下水位波动变化的快速准确预测,以巢湖为例,采用集成学习LightGBM算法,构建降水数据驱动下的巢湖日均水位预测模型。模型以流域历史一周的日均降雨和拟预测水文站历史一周日均水位为输入,采用2019—2022年资料训练模型,2023年资料进行验证。验证及敏感性分析结果表明,构建的基于LightGBM的水位预测模型具有良好的稳健性和精度,忠庙站和巢湖闸站水位预测均方根误差分别为0.03 m和0.04 m,纳什效率系数分别达0.98和0.94。该模型可为湖泊水位的快速预测分析提供参考。

       

      Abstract: Accurately predicting and forecasting the changes in lake water levels is of great significance for regional water security. In order to achieve rapid and accurate prediction of lake water level fluctuations driven by basinal inflow, this paper takes Chaohu Lake as an example and adopts the ensemble learning LightGBM algorithm to construct a daily average water level prediction model for Chaohu Lake driven by precipitation data. The model takes the daily average rainfall of the basin in one historical week and the historical daily average water level of the simulated hydrological station in one week as input, and is trained on data from 2019 to 2022 with 2023 for validation. The validation and sensitivity analysis results show that the constructed water level prediction model based on LightGBM has good robustness and accuracy, with root mean square errors of 0.03 m and 0.04 m for Zhongmiao and Chaohu sluice stations water level predictions, and Nash efficiency coefficients of 0.98 and 0.94 respectively. This model provides a reference for rapid prediction and analysis of lake water levels.

       

    /

    返回文章
    返回