研究探讨 101

DOI:10.16867/j.issn.1673-9264.2023424

孙奇石,顾朝军.1960—2016年三峡库区降水时空变化特征研究[J].中国防汛抗旱,2024,34(12):101-107.SUN Qishi,GU Chaojun.Spatio-temporal variation of precipitation in the Three Gorges Reservoir Area from 1960 to 2016[J].China Flood & Drought Management,2024,34(12):101-107.(in Chinese)

1960—2016年三峡库区降水时空变化特征研究

孙奇石 顾朝军

(水利部长江水利委员会长江流域水土保持监测中心站,武汉430012)

摘 要:全球变暖背景下,区域极端降水变化明显,对生态环境产生重要影响。利用三峡库区及周边23个气象站逐日降水量数据,采 用线性倾向率、Mann-Kendall(MK)趋势检验和空间插值法研究了库区11个极端降水指标变化特征。结果表明:三峡库区11个极端降 水指标中有6个指标具有下降倾向,分别为:PRCPTOT(年降水量)、CDD(最长连续无雨日数)、CWD(最长连续有雨日数)、R10(日降水量 ≥10 mm 的日数)、R20(日降水量≥20 mm 的日数)、RX5day(最大连续5 d降水量),其中 CWD呈显著的下降趋势,下降速率为0.20 d/(10 a);5个指标呈不显著上升趋势,分别为:R50(日降水量≥50 mm 的日数)、R95p(日降水量≥95%分位数的总降水量)、R99p(日降水量≥ 99%分位数的总降水量)、RX1day(最大连续1 d降水量)和 SDII(全年平均降水强度)。空间上,PRCPTOT、R10、R20、R50 和 RX5day 呈中部 大、西南和东北部小的分布格局; CDD和 SDII 呈自西南向东北部逐渐增大趋势,CWD、R95p、R99p 和 RX1day 空间格局特征不明显。与 1960—2003年相比,2004—2016年 R50、R95p、R99p、RX1day、RX5day和 SDII 等极端降水指标变化幅度大于其他降水指标。

关键词:极端降水;趋势;时空变化;三峡库区

中图分类号:P426.6 文献标识码:A 文章编号:1673-9264(2024)12-101-07

0引 言

气候变化及其影响已成为全球科学领域备受关注的 议题。政府间气候变化专门委员会(IPCC)第六次评估报告 指出^[1-2],1850—1900年,全球地表平均温度已上升约1℃, 预计未来20年全球升温将达到或超过1.5℃。气候变化不 仅对人类生存环境构成威胁,还对区域经济、社会发展产 生深远影响^[3-5]。地表气温上升加剧了高温干旱和暴雨洪涝 等极端气候事件的频发,严重影响人类的正常生产和生 活^[6-8]。据估计,过去40年因极端气候事件造成的经济损失 增长了10倍,如何有效应对气候变化已成为21世纪人类 所面临的一项重大挑战^[9-10]。

三峡库区位于长江上游与中、下游的交汇处,是长江

上游经济带的关键组成部分^[11-12]。该区域地形复杂、山高 坡陡,且频繁出现暴雨,是长江上游地区水土流失问题严 重的区域之一^[13-15]。根据1985年的水土流失遥感调查报 告,三峡库区水土流失面积达到3.88万km²,平均土壤侵蚀 模数为3995t/(km²·a)^[16]。水土流失不仅破坏了土地资源, 还导致大量泥沙淤积河道,破坏水利设施,影响水质,现已 成为影响三峡库区生态环境的关键因素^[17]。另外,极端降 水极易引起水土流失,进一步加剧区域生态环境的破 坏^[18-19]。2003年三峡大坝建成蓄水后,库区气候变化也颇 受关注^[20-22]。同时,随着《中华人民共和国长江保护法》的 颁布实施及长江经济带高质量发展的推进,库区的生态保 护力度也在不断加大。因此,对三峡库区降水的时空变化 特征进行分析具有重要意义^[23]。 本文基于三峡库区及周边23个气象站1960—2016年逐 日降水数据,研究了库区11个极端降水指标时空变化特征,为三峡库区暴雨洪水灾害防治、生态环境治理及降低 气候风险提供了重要的科学依据和理论支撑。

1 资料与方法

1.1 研究区域

三峡库区是指受长江三峡工程淹没的地区,其地理位 置位于北纬28°31′—31°44′,东经105°50′—111°40′,如图1 所示。三峡库区东起湖北宜昌市、西至重庆江津区,包括湖 北省4个县和重庆市18个区(县),总面积约5.8×10⁴ km²。 该地区的地貌类型主要包括山地、丘陵、台地、平坝等,以 中低山为主,属亚热带季风湿润气候,多年平均气温18℃, 多年平均降水量约1150 mm,降水集中在6—10月,多年 平均年径流量约401.8亿m³;土壤以紫色土、石灰土、黄壤、 黄棕壤、水稻土为主,主要植被类型为常绿与落叶阔叶混 交林、落叶阔叶与常绿针叶混交林、针叶林和灌草丛等。由 于人口密度高,人地矛盾尖锐,三峡库区的土地垦殖率较 高。耕地主要以旱坡地为主,多分布在长江干、支流两岸。 坡耕地土壤侵蚀已成为三峡库区水土流失的主要源头和 入库泥沙的主要来源^[24-25]。

图1 三峡库区地理位置和气象站点分布图

1.2 资料与统计指标

本文采用三峡库区及周边23个气象站1960—2016年 逐日降水数据,计算极端降水指标,气象站的分布情况如 图1所示。所有资料均来自中国气象数据共享服务网 (http://data.cma.gov.cn)。11个极端降水指标见表1。

1.3 方法

研究采用一元线性回归模型中线性趋势项的10倍作

为极端降水指标10年的气候倾向率,以便定量分析气象要 素变化的线性趋势^[26]。采用反距离加权(IDW)对极端降水 指标变化进行空间分析^[27]。采用 Mann-Kendall(MK)秩相 关检验极端降水指标时间变化趋势^[28-29],MK 法检验统计 量(*Zmk*)为正,表示时间序列呈增加趋势,为负表示时间 序列呈减少趋势,显著性水平为0.05和0.01时的*Zmk*临界 值分别为±1.96和±2.58,其计算方法详见文献[30]。

表1 极端降水指标定义及分类

指标	定义	单位
PRCPTOT	年降水量	mm
R10	日降水量≥25 mm的日数	d
R20	日降水量≥20 mm的日数	d
CDD	最长连续日降水量<1 mm的日数	d
CWD	最长连续日降水量≥1 mm的日数	d
R50	日降水量≥50 mm的日数	d
R95p	日降水量≥95%分位数的总降水量	mm
R99p	日降水量≥99%分位数的总降水量	mm
RX1day	最大1d降水量	mm
RX5day	最大连续5d降水量	mm
SDII	全年平均降水强度(降水量/降水日数)	mm/d

2 结果与分析

2.1 极端降水指标时间变化特征

1960—2016年三峡库区降水指标年际变化、变化特征 分别如图 2、表 2 所示。分析可知,1960—2016年三峡库区 多年平均降水量 1 100.2 mm, *PRCPTOT*有上升倾向,上升 速率为 1.76 mm/(10 a);多年平均 *CDD*为 27.10 d,年际变 化呈显著下降趋势,下降速率为 0.46 d/(10 a);多年平均 *CWD*为 6.71 d,有下降倾向,下降速率为 0.20 d/(10 a);多 年平均*R*10、*R*20和*R*50分别为 32.52 d、15.39 d和 2.92 d,其 中*R*10 有下降倾向,下降速率为 0.27 d/(10 a),*R*20 和*R*50变化率接近于 0;多年平均*R*95p、*R*99p分别为 306.80 mm、98.04 mm,均有上升倾向,上升速率分别为 6.42 mm/(10 a)、4.59 mm/(10 a);多年平均*RX*1day、*RX*5day 分别为 86.44 mm、136.88 mm,其中*RX*1day有上升倾向,上 升速率为 0.74 mm/(10 a),*RX*5day 有下降倾向,下降速率 为 0.28 mm/(10 a);多年平均*SD*II为 10.93 mm/d,有上升倾 向,上升速率为 0.07 mm·d⁻¹/(10 a)。

表3为1960—2016年三峡库区降水指标相关系数。三 峡库区 PRCPTOT 与 CDD 显著负相关,与其他极端降水指

图 2 1960-2016 年三峡库区降水指标年际变化

表2 1960-2016年三峡库区降水指标变化特征

指标	PRCPTOT	CDD	CWD	<i>R</i> 10	R20	<i>R</i> 50	<i>R</i> 95p	<i>R</i> 99p	RX1day	RX5day	SDII
均值	1100.17 mm	27.10 d	6.71 d	32.52 d	15.39 d	2.92 d	306.80 mm	98.04 mm	86.44 mm	136.88 mm	$10.93 \ \mathrm{mm/d}$
MK检验	-0.207	-0.971	-2.492**	-1.019	-0.110	0.578	0.998	1.659	1.177	-0.571	0.427
线性倾向率 (均值/(10 a))	1.76	-0.46	-0.20	-0.27	0.02	0.04	6.42	4.59	0.74	-0.28	0.07

注:**表示达0.01显著性水平,未标表示不显著。

Dec.2024 NO.12 VOL.34

指标	PRCPTOT	CDD	CWD	<i>R</i> 10	R20	<i>R</i> 50	<i>R</i> 95p	<i>R</i> 99p	RX1day	RX5day	SDII
PRCPTOT	1**										
CDD	-0.309*	1**									
CWD	0.300*	-0.161	1**								
<i>R</i> 10	0.924	-0.285*	0.32*	1**							
R20	0.938	-0.247	0.237	0.888**	1**						
<i>R</i> 50	0.811	-0.198	0.008	0.639**	0.800**	1**					
<i>R</i> 95p	0.854	-0.265*	0.019	0.683**	0.851**	0.971**	1**				
<i>R</i> 99p	0.712	-0.321*	-0.032	0.515**	0.594**	0.809**	0.834**	1**			
RX1day	0.639	-0.264	-0.134	0.465**	0.543**	0.793**	0.795**	0.932**	1**		
RX5day	0.732	-0.142	-0.043	0.564**	0.669**	0.841**	0.852**	0.847**	0.860**	1**	
SDII	0.792	-0.148	0.032	0.706**	0.874**	0.825**	0.882**	0.654**	0.624**	0.689**	1**

注:*表示达0.05显著性水平,**表示达0.01显著性水平。

标均显著正相关,相关系数为0.300~0.938。CDD和CWD 与其他降水指标相关性较低。CDD和R10、R95p、R99p呈显 著负相关,CWD与R10显著正相关。R10、R20、R50、R95p、 R99p、RX1day、RX5day和SDII之间的相关系数为0.465~ 0.932,均达0.01显著性水平。

2.2 极端降水指标空间变化特征

三峡库区多年平均*PRCPTOT*为1068.7~1262.1mm, 高值区主要分布在中部的丰都、万州等地(图3(a))。 *CDD*为22.5~31.4d,呈现从西南部向东北部增大的分布 格局(图3(b))。*CWD*为5.8~7.6d,高值区主要分布在丰都、奉节、巴东和兴山等地(图3(c))。*R*10为29.7~38.5d、 *R*20为12.9~19.7d、*R*50为2.1~4.3d,均呈中部高、西南部和东南部低的分布格局(图3(d)、图3(e)、图3(f))。*R*95p和*R*99p分别为254.9~379.1 mm和77.4~136.5 mm,空间变化规律不明显(图3(g)、图3(h))。*RX*1day和*RX*5day分别为75.5~107.7 mm和113.7~173.6 mm,呈西南和东南低、中部高的分布格局(图3(i)、图3(j))。*SD*II为9.4~12.5 mm/d, 呈自西南向东南逐渐增大的分布格局(图3(k))。

三峡库区各站点*PRCPTOT*年际变化均不显著(图4(a), 其中8个(34.8%)站点呈不显著上升趋势,15个(65.2%)站 点呈不显著下降趋势(图4(a))。除*CWD*外,其他降水指标 普遍呈不显著的变化趋势(图4(b)至图4(k))。CWD中,有 8个(34.8%)站点呈显著下降趋势,3个(13%)站点呈不显 著上升趋势,12个(52.2%)站点呈不显著下降趋势。

研究探讨 105 STUDIES AND DISCUSSIONS 105

2.3 三峡工程运行前后各极端降水指标时间变化特征

表4为1960-2003年(三峡工程运行前)和2004-2016年(三峡工程运行后)三峡库区各极端降水指标变化 情况。与1960-2003年相比,2004-2016年三峡库区多 年平均 PRCPTOT 減少 5.8 mm,減幅为 0.5%; CDD、CWD、 R10 和 R20 也有所降低,減幅为 1.9%~10.1%, R50、R95p、 R99p、RX1day、RX5day 和 SDII 均有所增大,增幅为 2.7%~ 23.3%。

表4 1	1960—2003年和2004-	-2016年三峡库区	各极端降水指标变化
------	------------------	------------	-----------

项目	PRCPTOT	CDD	CWD	<i>R</i> 10	R20	<i>R</i> 50	<i>R</i> 95p	<i>R</i> 99p	RX1day	RX5day	SDII
1960—2003年	1101.5 mm	27.4 d	6.9 d	32.9 d	15.5 d	2.9 d	301.7 mm	93.1 mm	85.1 mm	136.0 mm	10.9 mm/d
2004—2016年	1095.7 mm	26.2 d	6.2 d	31.4 d	15.2 d	3.0 d	324.1 mm	114.8 mm	91.0 mm	139.7 mm	11.2 mm/d
变化值	-5.8 mm	-1.2 d	–0.7 d	-1.5 d	-0.3 d	0.1 d	22.3 mm	21.7 mm	5.9 mm	3.7 mm	0.3 mm/d
变幅	-0.5%	-4.4%	-10.1%	-4.6%	-1.9%	3.4%	7.4%	23.3%	6.9%	2.7%	2.8%

图 5 为 2004—2016 年相对 1960—2003 年三峡库区各站点降水指标变化情况。与 1960—2003 年相比, 2004—2016 年库区各站点极端降水指标变化幅度为-45.7%(荆州

*R*99p)~87.2%(达州 *R*99p)(图5)。11个极端降水指标中, *PRCPTOT*为-15.5%~10.3%, *CDD*为-22.8%~11.9%, *CWD*为-23.7%~54.8%, *R*10为-18%~7.8%, *R*20为-19%

~26.6%, R50 为-15.6%~46%, R95p 为-17.5%~53.9%, R99p 为-45.7%~87.2%, RX1day 为-9.2%~28.4%, RX5day 为-20.1%~39.3%, SDII 为-6%~26.8%。整体上 R50、 R95p、R99p、RX1day、RX5day和SDII等极端降水指标变化 幅度大于其他指标。

站点	PRCPTOT	CDD	CWD	R10	R20	R50	R95p	R99p	RX1day	RX5day	SDII	_ 变化率(%
房县	2.7	10.5	0.1	5.0	16.5	-12.0	15.1	27.4	18.2	-7.6	8.1	87.2
达川	10.3	-12.9	-15.8	-0.1	15.5	46.0	53.9	87.2	15.3	39.3	15.5	
镇坪	5.4	2.5	-7.0	0.5	9.1	37.6	34.2	69.2	26.7	24.5	6.9	
奉节	-15.5	-0.2	-14.7	-15.7	-19.0	-9.3	-17.5	-21.5	-9.2	-19.7	-4.4	
巴东	1.4	-8.9	-6.7	2.0	10.6	4.6	10.6	8.5	5.8	-5.2	7.7	
兴山	-5.3	11.9	-15.7	-11.0	-12.1	42.1	15.6	60.9	8.7	4.9	3.5	
南漳	-3.5	-5.4	-4.6	-6.9	-0.1	-14.5	-5.5	54.4	10.6	3.4	0.1	
万州	-6.7	-5.0	-19.9	-5.8	-12.3	-15.6	-11.8	21.4	5.8	-7.5	-0.6	
利川	-5.3	-15.1	-22.0	-7.0	-5.7	-15.4	-9.9	-5.4	1.7	-9.8	-1.8	
建始	-3.8	-20.2	-21.4	-5.8	-4.8	-6.2	2.6	41.3	11.8	1.6	1.5	
恩施	-4.9	-16.2	-18.6	-8.1	-6.9	-9.4	-2.6	25.5	-5.1	-5.2	0.5	
五峰	-10.3	-5.8	-23.7	-9.9	-16.8	-3.3	-13.4	-21.6	-6.5	-20.1	-4.9	
荆州	-3.1	-7.3	-8.8	-9.7	0.3	8.8	10.0	-45.7	0.1	4.4	0.4	
大足	3.4	5.0	0.2	-5.2	-11.0	39.5	33.3	51.4	28.4	9.8	6.3	
合川	5.5	5.8	-3.1	0.2	4.0	33.3	31.8	52.4	13.1	23.1	8.6	
沙坪坝	4.3	-8.2	-7.9	7.8	6.8	-4.7	6.4	47.0	26.4	22.9	5.2	
江津	-1.9	-2.9	-8.9	-4.7	-4.3	0.3	8.7	45.9	20.7	6.4	1.0	
长寿	-3.8	-6.8	-20.2	-2.4	-5.5	2.2	-3.4	-11.1	-3.6	-0.6	-1.8	
丰都	-2.1	-10.4	-14.5	-3.8	0.2	-12.1	-9.2	12.7	5.0	5.0	0.1	
黔江	-3.1	-22.8	-16.7	-2.1	-3.3	-12.8	1.5	-0.5	-3.6	2.9	0.1	
桐梓	-11.5	7.9	-14.0	-18.0	-14.3	-9.0	-5.1	-17.3	-6.3	-0.3	-6.0	
綦江	4.1	-8.2	-3.0	0.0	2.6	12.2	17.2	16.8	2.5	10.6	4.1	-157
正安	-7.6	-0.4	54.8	1.8	26.6	10.7	20.4	64.1	1.3	26.5	26.8	-4.5.7

图 5 2004—2016年相对 1960—2003年三峡库区各站点降水指标变化 注:图中数据单位为%。

3 结 论

利用三峡库区及周边23个气象站逐日降水量数据,采 用线性倾向率、MK趋势检验和空间插值法研究了11个极 端降水指标变化特征。结果显示,三峡库区11个极端降水 指标中仅CWD呈显著下降趋势,下降速率为0.2 d/(10 a)。空 间上,PRCPTOT、R10、R20、R50和RX5day呈中部大、西南 和东北部小的分布格局,CDD和SDII呈自西南向东北部逐 渐增大趋势,CWD、R95p、R99p和RX1day空间格局特征不 明显。与1960—2003年相比,2004—2016年库区极端降水 指标整体变化稳定,但部分站点R50、R95p、R99p、RX1day、 RX5day、SDII等极端降水指标变化相对较大,应加强区域 极端降水研究,做好极端降水灾害防控。

参考文献

- [1] 樊星,秦圆圆,高翔.IPCC第六次评估报告第一工作组报告主要结论 解读及建议[J].环境保护,2021,49(Z2):44-48.
- [2] IPCC. The sixth assessment report of the intergovernmental pan elon climate change[M].London:Cambridge University Press, 2021.
- [3] 任国玉,石广玉.气候变化国家评估报告(I)中国气候变化的历史和 未来趋势[J].气候变化研究进展,2006:3-8.

2024年12月 第12期 第34卷 Dec.2024 NO.12 VOL.34 🖌

- [4] 姜彤,翟建青,罗勇,等.气候变化影响适应和脆弱性评估报告进展:IPCC AR5到AR6 的新认知[J].大气科学学报,2022,45(4):502-511.
- [5] 李威,陈鲜艳,李潇潇,等.对气候变暖背景下开展气候可行性论证工 作的思考[J].中国防汛抗旱,2023,33(11):1-7.
- [6] 钱维宏,符娇兰,张玮玮,等.近40年中国平均气候与极值气候变化的概述[J].地球科学进展,2007,22(7):673-684.
- [7] 钟科元.极端气候变化和人类活动对松花江流域输沙量的影响研究[D].西安:西北农林科技大学,2018.
- [8] 严中伟,杨赤.近几十年中国极端气候变化格局[J].气候与环境研究,2000,5(3):6.
- [9] 黄强,陈子燊.全球变暖背景下珠江流域极端气温与降水事件时空变 化的区域研究[J].地球科学进展,2014,29(8):956-967.
- [10] 胡宜昌, 董文杰, 何勇. 21 世纪初极端天气气候事件研究进展[J]. 地 球科学进展, 2007, 22(10):10.
- [11]赵健,肖翔,涂人猛.三峡库区"长治"工程建设成效分析[J].长江科 学院院报,2015,32(3):7-9,19.
- [12]刘春霞,李月臣,杨华,等.三峡库区重庆段生态与环境敏感性综合评价[J].地理学报,2011.
- [13]陈剑,杨志法,李晓.三峡库区滑坡发生概率与降水条件的关系[J].
 岩石力学与工程学报,2005,24(17):3052-3056.
- [14] 矫梅燕.三峡工程气候效应综合评估报告自然科学[M].北京:气象出版社,2014.
- [15]廖纯艳.三峡库区水土流失防治的实践与发展对策[J].中国水土保持,2009(1):1-3,51.
- [16]顾朝军,朱永清,黄立文,等.长江流域水土流失变化及影响因素分析[J]. 中国防汛抗旱,2022,32(S1):24-29.
- [17]李月臣,刘春霞,赵纯勇,等.三峡库区重庆段水土流失的时空格局特征[J].地理学报,2008(5):475-486.
- [18]谢志清,杜银,曾燕,等.江淮流域年极端降水事件分类特征及其致洪 风险[J].中国科学:地球科学,2018,48(9):16.
- [19]王雪臣, 冷春香, 冯相昭, 等. 长江中游地区洪涝灾害风险分析[J]. 科 技导报, 2008, 26(2):61-66.
- [20]张静,刘增进,肖伟华,等.三峡水库蓄水后库区气候要素变化趋势分析[J].人民长江,2019(3):5.
- [21]王苗,周月华,任永建,等.三峡水库蓄水关键区降水时空变化特征[J]. 气象与环境科学,2017,40(1):7.
- [22]符坤,张六一,任强.蓄水前后三峡库区气候时空变化特征[J].环境 影响评价,2018,40(3):6.

- [23]曾慧琪,滕顺林,邵蒙,等.近60年三峡库区极端降水变化及其与环流指数遥相关分析[J].人民珠江,2023,44(5):1-9.
- [24]王玉宽,文安邦,张信宝.长江上游重点水土流失区坡耕地土壤侵蚀的¹³⁷Cs法研究[J].水土保持学报,2003(2):77-80.
- [25]贺伟,布仁仓,熊在平,等.1961—2005年东北地区气温和降水变化趋势[J].生态学报,2013,33(2):519-531.
- [26]张勇,周媛,姚赫,等.近10年三峡库区极端降水时空特征分析[J].中 国防汛抗旱,2022,32(S1):9-13.
- [27]朱会义,刘述林,贾绍凤.自然地理要素空间插值的几个问题[J].地 理研究,2004,23(4):425-432.
- [28]MITCHELLJL M, DZERDZEEVSKLL B, FLOHN H. Climate change[M].Gene va:WHO Technical Note 79, World Meteorological Organization, 1966.
- [29]张静,段丽敏,何俊仕.辽宁省辽南地区近40年降水时空变化特性分析[J].中国防汛抗旱,2017,27(3):62-66,90.
- [30]MANN H B. Non-parametric test against trend[J]. Econometrica, 1945,13(3):245-259.

Spatio-temporal variation of precipitation in the Three Gorges Reservoir Area from 1960 to 2016

SUN Qishi, GU Chaojun

(Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission, Wuhan 430012) Abstract: Under the background of global warming, regional precipitation changes obviously, which has an important impact on the ecological environment. this paper investigated the change characteristics of 11 precipitation indexes by using linear trend rate, MK trend test and spatial interpolation methods, based on the daily precipitation data of 23 weather stations in the Three Gorges Reservoir area and its surrounding areas. The results showed that six precipitation indexes (*PRCPTOT*, *CDD*, *CWD*, *R*10, *R*20 and *RX5*day) in the Three Gorges Reservoir area showed a decreasing trend, and *CWD* showed a significant decreasing trend with a decreasing rate of 0.20 d/(10 a). Five precipitation indexes (*R50*, *R95p*, *R99p*, *RX1*day and *SDII*) showed no significant upward trend. The spatial distribution pattern of *PRCPTOT*, *R10*, *R20*, *R50* and *RX5*day showed a high value in the central part and low in the southwest and northeast part. *CDD* and *SDII* gradually increased from southwest to northeast, while the spatial pattern of *CWD*, *R95p*, *R99p* and *RX1*day was not obvious. Compared with 1960–2003, the variation range in extreme precipitation indexes such as *R50*, *R95p*, *R99p*, *RX1*day, *RX5*day and *SDII* from 2004 to 2016 was greater than that of the other indexes.

Keywords: extreme precipitation; trend; spatio-temporal variation; Three Gorges Reservoir Region 编辑 江 密